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Ordered quantization and the Ehrenfest time scale

R. M. Angelo, L. Sanz, and K. Furuya
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~Received 14 January 2003; published 11 July 2003!

We propose a prescription to quantize classical monomials in terms of symmetric and ordered expansions of
noncommuting operators of a bosonic theory. As a direct application of such quantization rules, we quantize a
classically time evolved functionO(q,p,t), and calculate its expectation value in coherent states. The result
can be expressed in terms of the application of a classical operator that performs aGaussian smoothingof the
original functionO evaluated at the center of the coherent state. This scheme produces a natural semiclassical
expansion for the quantum expectation values at a short time scale. Moreover, since the classical Liouville
evolution of a Gaussian probability density gives the same form for the classical statistical mean value, we can
calculate the first-order correction in\ entirely from the associated classical time evolved function. This allows
us to write a general expression for the Ehrenfest time in terms of the departure of the centroid of the quantum
distribution from the classical trajectory, provided we start with an initially coherent state for each subsystem.
In order to illustrate this approach, we have calculated analytically the Ehrenfest time of a model with
N-coupled nonlinear oscillators with nonlinearity of even order.

DOI: 10.1103/PhysRevE.68.016206 PACS number~s!: 05.45.2a, 03.65.Sq, 05.20.Gg
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I. INTRODUCTION

Since the earliest days of the quantum theory, the inv
tigation of the differences between the probabilistic conce
in classical Liouville and quantum dynamics has been
important issue. There have been many studies, in the
two decades, concerning the semiclassical regime of sys
whose classical counterparts exhibit chaos@1#. The question
of estimating how long the classical and quantum evoluti
stay close has been one of the main questions in semicl
cal analysis. For classically chaotic flows, the break time
Ehrenfest time (tE) was found in Refs.@2,3# and then rigor-
ously proved in Ref.@4# to diverge logarithmically with\. In
the classically regular flow, it was suggested in Ref.@5# that
the behavior oftE with \ is algebraic (\2d), but no univer-
sal nature of such behavior has been shown yet.

According to the famous Ehrenfest’s work@6#, for quan-
tum states that are localized enough, the time variation of
mean quantum momentum must be equal to the local fo
This statement is exact for quadratic Hamiltonians, but
validity is restricted to a short-time scale, the Ehrenfest sc
for more general nonlinear systems. Mathematically,
Ehrenfest theorem allows us to write^O(X̂)&5O(^X̂&) for
times smaller than the Ehrenfest time. In this situation,
initial dynamics is described essentially by a mean field
proximation, where we have a localized packet obeying c
sical equations of motion. Then, it is reasonable to expe
rather good agreement between quantum and classical L
villian centroids and the classical trajectory. In fact, this s
nario has already been reported in literature@7#.

In this work, we propose a simple analytical scheme
calculate the Ehrenfest time for integrable systems. Our s
ing point is to propose a classical Liouvillian operator th
makes explicit the symmetric form of the usual quantizat
rules. Using such an operator, we are able to take a gen
classical functionO that expresses the time evolution of
physical quantity, quantize it, and evaluate its expecta
1063-651X/2003/68~1!/016206~5!/$20.00 68 0162
s-
ts
n
st

ms

s
si-
r

e
e.
s
e,
e

e
-

s-
a
u-
-

o
rt-
t
n
ral

n

value in coherent states at each time. The final result, wh
is shown to be analytically identical to the statistical avera
calculated through the classical Liouville formalism, is wr
ten in terms of a certain differential operator acting on t
original classical function. Since this is just a compact fo
of expressing the action of the corresponding power serie
\, our recipe automatically leads to a semiclassical exp
sion around the time evolved classical function. Notice t
the equality between quantum and statistical centroids g
antees that we are working within a classical time scale. T
allows us to define mathematically the Ehrenfest scale us
just the Liouvillian Gaussian average, without solving t
quantum dynamical problem.

As an example, we present an explicit calculation of t
Ehrenfest time forN-coupled nonlinear oscillators, with non
linearity of order 2k, an even integer. This model, to whic
we will address the quantum-classical departure issue ca
associated to several nonlinearly interacting fields via Ke
type@9,10# and cross-Kerr-type interactions@11# known to be
relevant in quantum optics@12#, and also for two quantized
vibrational modes of a single trapped ion@13#. It is an inte-
grable model where the role of nonlinearity can be stud
analytically for several quantities and, in particular, forN
5k52 the quantum-classicalbreak time has been deter
mined @14# based on physical properties of the exact qu
tum states. Although the emphasis of studying the br
times in the literature has been on ‘‘chaotic states’’@8,15#,
here we are concerned with integrable cases, where we
able to derive an analytical expression for the Ehrenfest ti

II. ORDERED QUANTIZATION

A. Definition

Let us start by presenting a convenient quantizat
scheme for a single degree of freedom system, which will
easily generalized to degreeN. Consider two noncommuting
operatorsÂ andB̂ whose commutator is ac-number, denoted
©2003 The American Physical Society06-1
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by c (@Â,B̂#5c). Then, a given classical monomialanbm,
wherea andb are canonically conjugated classical variab
@16#, will be quantized in asymmetricand ordered form
through the prescriptions

anbm→SÂ,B̂~ÂnB̂m!, ~1!

where superoperatorSÂ,B̂ is given by

SÂ,B̂5e2(1/2)[Â,B̂] ]Â]B̂5 (
k50

` ~2 1
2 @Â,B̂# !k

k!
] Â

k
] B̂

k . ~2!

The above index (Â,B̂) corresponds to the ordering withÂ
on the left andB̂ on the right. Since@] Â ,] B̂#5@] Â ,B̂#

5@Â,] B̂#50, SÂ,B̂ andSB̂,Â areclassicalunitary differential
superoperators satisfyingSÂ,B̂SB̂,Â5SB̂,ÂSÂ,B̂51. The pre-
scription defined in expression~1! leads to different order-
ings~depending on which variable is chosen to bea or b) for
the same original classical function and, therefore, the a
ciated symmetric operators must be the same. From this
sideration, we deduce the following ordering formulas:

ÂnB̂m5SB̂,Â
2

B̂mÂn5e1[ Â,B̂] ]Â]B̂B̂mÂn,

B̂mÂn5SÂ,B̂
2

ÂnB̂m5e2[ Â,B̂] ]Â]B̂ÂnB̂m. ~3!

Using a classical displacement operatorea]xf (x)5 f (x1a),
which can be used to write e2c/2]Â]B̂ÂnB̂m5@Â

2(c/2)] B̂#nB̂m, one can show that these results reprodu
those in the textbooks~see, e.g., Louisell@17#!. A simple
example shows that our quantization scheme leads to
usual quantization rules, but in an automatically orde
form. Consider the following product of classical canonic
phase space variables:q2p. According to the usual rules, thi
is transformed into atotally symmetricoperator@18# of the
form 1

3 (Q̂2P̂1 P̂Q̂21Q̂P̂Q̂), and using commutation rela
tion @Q̂,P̂#5ı\, rewritten asQ̂2P̂2ı\Q̂. But this is exactly
the result produced by the expression in Eq.~1! with choice
(a,b)5(q,p), just by making some derivatives. We final
note that superoperatorsSÂ,B̂ have already appeared in litera
ture in the case of the canonical phase space opera
(Â,B̂)5(Q̂,P̂), in slightly different contexts@19#.

B. Normal ordering in bosonic operators

As an immediate application of the formulas presen
above, we will express the totally symmetric ordered expr
sion SQ̂,P̂Q̂nP̂m in a form more suitable for our purpose o
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taking expectation values in the Weyl-Heisenberg coher
states. We start by expressing such a polynomial in term
bosonic creation and annihilation operators

SQ̂,P̂Q̂nP̂m5e2(ı\/2)]Q̂] P̂Q̂nP̂m

5zn,me(1/4)(]
â

2
2]

â†
2

)~ â1â†!n~ â2â†!m, ~4!

whereznm5(2ı)m(A\/2)n1m. Now, using

~ â6â†!n5 (
k50

n

~61!n2kS n

kD e(1/2)] â] â†~ â†n2kâk!, ~5!

we can re-express Eq.~4! as

SQ̂,P̂Q̂nP̂m5 (
k50

n

(
l 50

m

~21!m2 lzn,mS n

kD
3S m

l D e(1/4)(]
â

2
2]

â†
2

)e(1/2)] â2
] â1

†e(1/2)] â4
] â3

†

3~ â1
†n2kâ2

kâ3
†m2 l â4

l !, ~6!

with the subindexes that we introduced, to indicate where
action of the differentiation should take place. At the end
calculation we must erase all these subindexes. Using r
tion ~3!, we get

SQ̂,P̂Q̂nP̂m5 (
k50

n

(
l 50

m

~21!m2 lzn,mS n

kD
3S m

l D e(1/4)(]
â

2
2]

â†
2

)e(1/2)] â2
] â1

†e(1/2)] â4
] â3

†e] â2
] â3

†

3~ â1
†n2kâ3

†m2 l â2
l â4

k!. ~7!

This is the normal- ordered expression~in the creation and
annihilation operators! for the original Q̂P̂-ordered mono-
mial. Now, it is a simple matter to calculate its expectati
value.

C. Coherent states representation

Since we are interested in the connection between qu
tum and classical mechanics, the coherent state basis ap
as the most appropriated one. In particular, it will be of
terest for us to evaluate the expectation value in cohe
states of some operator products like the one treated in
ceding section. Then, we first calculate the matrix eleme
in the coherent state basis of the operator function given
Eq. ~7!
^a1uSQ̂,P̂Q̂mP̂mua2&

^a1ua2&
5zn,me(1/4)(]a2

2
2]

a1
*

2
)H e]a]de(1/2)]a]be(1/2)]c]dFA\

2
~a1b!GnFA\

2

~c2d!

ı GmJ a5c5a2

b5d5a
1*

. ~8!
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Setting nowa15a25a05(q01ıp0 )/A2\ and performing
adequate variable transformations, we finally get

^a0uSQ̂,P̂Q̂nP̂mua0&5e(\/4)¹0
2
q0

np0
m, ~9!

where

¹0
25]q0

2 1]p0

2 ,

~q0 ,p0!5~^a0uQ̂ua0&,^a0uP̂ua0&!. ~10!

The expectation value given in Eq.~9! must be calculated
through the series expansion of the classical oper

e(\/4)¹0
2
, which gives a natural expansion in powers of\,

showing its semiclassical nature. In fact, in the classical li
\→0, the quantum expectation value of the operator fu
tion reduces to a purely classical function calculated at
center of the coherent packet located at (q0 ,p0).

Another interesting relation can be obtained from a sim
lar calculation:

^Q̂nP̂m&5e(\/4)¹0
2
~e(ı\/2)]q0

]p0q0
np0

m!, ~11!

which implies that

1

ı\
^@Q̂n,P̂m#&5expF\4 ¹0

2G S sin~\/2! ]q0
]p0

\/2
D q0

np0
m.

~12!

It is important to note that the term within the parenthese
Eq. ~11! is exactly the Weyl transform of operatorQ̂nP̂m

@19#. The extra operator factore(\/4)¹0
2

is what makes refer-
ence to the width of the coherent packet, as we shall see l
These results also point to the existence of an asymp
classical limit (\→0) for such expectation values in cohe
ent states.

III. SHORT TIME QUANTIZATION

The usual quantization rules are defined in the Heisenb
picture, where the solutions for Hamilton’s equation
qH(q,p,t) and pH(q,p,t), are transformed into Heisenbe
operatorsQ̂H(Q̂,P̂,t) and P̂H(Q̂,P̂,t), whereQ̂ and P̂ de-
note Schro¨dinger operators. On the other hand, since
Heisenberg and Schro¨dinger pictures coincide att50, any
scheme of quantization based on the Schro¨dinger picture
would describe reasonably the quantum world for very sh
times. However, as long as we are interested in analyzing
quantum operator evolution only during a classical~mean
field! time scale, this would suffice~for the first order\
correction see Ref.@3#!.

In this context, consider a classically time evolved fun
tion O that has the following well defined expansion:

O~q,p,t !5 (
n,m50

`

cn,m~ t !qnpm. ~13!
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Coefficientscn,m(t) contain all the time dependence. Now
applying the operator of ordered quantizationSQ̂,P̂ and tak-
ing the average in coherent states we obtain

^a0uÔ~Q̂,P̂,t !ua0&5e~\/4)¹0
2O~q0 ,p0 ,t !, ~14!

where we have used result~9!. In order to estimate how long
result~14! could be trusted, we present the calculation of t
classical statisticalcounterpart of the problem. In the class
cal Liouvillian formalism, the following mean value is de
fined in the phase space (q,p):

^O~q0 ,p0 ,t !&cs5E dqdpr~q,p,t !O~q,p,0!, ~15!

where (q0 , p0) stands for the center of the initial distributio
r(q,p,0). Then, since r(q,p,t)5eLtr(q,p,0) and
O(q,p,t)5e2LtO(q,p,0), taking into account the fact tha
the volume in the phase space is preserved, we can rew
the previous equation in a Heisenberg-like form

^O~q0 ,p0 ,t !&cs5E dqdpr~q,p,0!O~q,p,t !. ~16!

Consider now a Gaussian initial distribution with widths,
and centered at point (q0 ,p0). Performing the variable trans
formations (q2q0)5x and (p2p0)5y and using the clas-
sical displacement operator again, we can rewrite Eq.~16! as

^O&cs5E dxdy
e2x2/s

Aps

e2y2/s

Aps
ex]qey]pO~q,p,t !. ~17!

Notice that functionO inside the integral no longer depend
on the integration variables. Hence, by completing squa
and performing formally the integration, we finally obtain

^O~q0 ,p0 ,t !&cs5e(s/4)¹0
2O~q0 ,p0 ,t !. ~18!

Now, we have proved that the effect of applying opera

e(s/4)¹0
2

is exactly that of smoothing functionO through a
Gaussian mean, wheres is related to the width of the Gauss
ian distribution to be used in the smoothing. According
this operator has already been used to express theQ function
as the Gaussian smoothing of the Wigner function@20#. It is
important to notice that this result is exact for Gaussian s
tistical averages, i.e., it was derived from first principl
without any approximation. The only implicit assumptio
used in the calculation was the existence of the derivative
all orders for functionO.

The comparison between expressions~14! and ~18!, with
s5\, confirms the fact that our proposal of a Schro¨dinger
quantization for classical function should be adequate ei
at a short-time scale or in cases in which the classical fu
tion depends linearly on the phase space coordinates (q0 ,p0)
~e.g., harmonic oscillator!. Results~14! and ~18! can easily
be extended for higher degrees of freedom.

At this point one might formulate a question. First w

interpret the action of operatore(\/4)¹0
2

on any classical func-
tion as an exact factorization of the effect of a Gauss
6-3
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wave packet contribution. In fact, for completely localiz
distribution (\50) there are no corrections. Then, one m
ask: is it possible, in the particular case of coherent separ
initial states, to express the exact quantum centroid,^R̂(t)&
5^„Q̂(t),P̂(t)…& in terms of smoothed forme(\/4)¹2

r c(t),
where r c(t)5„qc(t),pc(t)… is a certain classical dynamica
vector in phase space? The answer will be positive if we
able to calculate the inverse of the Gaussian smoothing
eration on the quantum centroid vector in the phase spa

r c~ t !5e2(\/4)¹0
2
^a0uR̂~ t !ua0&. ~19!

Functionr c(t) will then be acoherent quantum trajectory, in
the sense that it will carry all quantum dynamical inform
tion possible to put in a trajectory, except the contributi
due to a Gaussian smoothing effect. For the trivial case oN
noninteracting harmonic oscillators and the case of a bilin
coupling between two harmonic oscillators, the quantu
coherent and -classical trajectories coincide („qc(t),pc(t)…
5„q0(t),p0(t)…), as expected.

IV. THE EHRENFEST TIME

A. Formal definition

Now, we have all the necessary tools to undertake
problem of estimating the Ehrenfest time in the case of
initially separable coherent Gaussian wave packet. Assum
that the break instant occurs when the first-order correc
in \ becomes as important as the original vector, we ap
the smoothing process to the phase space classical traje
vector of a system withN degrees of freedomr (t)
5„q1(t),p1(t), . . . ,qN(t),pN(t)…. Expanding the smoothing
operator up to the first order in\, we obtain

^R̂~ t !&5e(\/4)“2
r ~ t !>r ~ t !1

\

4
“

2r ~ t !, ~20!

where“25( i 51
N ¹ i

2 is theN-dimensional Laplacian operato
Now, we formally define Ehrenfest timetE as being the in-
stant at which the magnitude of the difference between
quantum centroid and the corresponding classical vecto
phase space becomes equal to the magnitude of the in
classical vector. Mathematically this condition can be e
pressed as follows:

uu^R̂~ tE!&2r ~ tE!uu
uur ~0!uu

51. ~21!

This is similar to the definition fortE given in Ref.@3#. Now,
using Eq.~20!, we obtain the prescription for the analytic
calculation of the Ehrenfest time:

\

4

uu“2r ~ tE!uu
uur ~0!uu

51. ~22!

It is remarkable that we donot need to solve the quantum
equations of motion to findtE . This is the main difference
with the approach used in Refs.@3,22#. In fact, our scheme
takes into account only the wave packet correction to
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classical dynamics. However, since that is indeed the
manifestation of short-time quantum effects@6#, our proposal
must be enough to give a good estimate fortE . In what
follows, we will calculate the above defined break time f
the system ofN-coupled nonlinear oscillators.

B. Application to a nonlinear system

Consider the following classical Hamiltonian:

H5(
i 51

N

v i S pi
21qi

2

2 D 1gF(
i 51

N S pi
21qi

2

2 D G k

, ~23!

wherek>1 is integer andg is the only coupling constant o
the system, and from which we define the characteristic c
sical actionL5( i 51

N @(pi
21qi

2)/2# @21#. The equations of
motion can be solved by noticing thatL itself is a constant
of motion. The result reads

Fqi~ t !

pi~ t !
G5F cosQ i~ t ! sinQ i~ t !

2sinQ i~ t ! cosQ i~ t !
GFqi

pi
G , ~24!

where (qi ,pi) are the initial conditions of thei th oscillator
andQ i(t)5v i t1gtkLk21 is a rotation angle in phase spac
Finally, using Eqs.~22! and ~24!, we get for the Ehrenfes
time of this system

tE>F 1

k~k21!gLk21 S 2L

\ D 0.5G S 12
\k2

8L D , ~25!

where we kept only the first-order terms in\. For case (N
51,k52), our estimate gives the same scale as the e

FIG. 1. Dimensionless quantity which measures the depar
between quantum and classical centroids as a function of the dim
sionless parametervt for the bidimensional quartic oscillator (N
52,k52). These calculations were analytically performed withqi

5pi51 (L52), v i5v51, andg50.1, and\51 ~solid line!, \
50.1 ~dashed line! and \50.01 ~dot-dashed line!. The Ehrenfest
time scale~25! for each value of\ is represented by a vertical lin
in the corresponding style.
6-4
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calculation given in Ref.@22#, tE>(1/m)AI o /\ ~identifying
L and g with I o and m, respectively!. Also, case (N52,k
52) reproduces the results in Ref.@23#. Trivial limits are
also contemplated by the above result, namely, the cases
harmonic system (g50, k50 or k51), for which tE→`.
Moreover, our result is in accordance with some conjectu
predicting the general form (1/V)(S/\)d for the break time
of classically integrable systems@3,24#, where V51/@k(k
21)gLk21# and S52L are, respectively, the typical fre
quency and classical action of the system in considerat
We illustrate in Fig. 1 the Ehrenfest scale predicted by
pression~25! for case (N52,k52), where we can see a
algebraic (;t2) short-time departure. We also note that t
first-order correction to the Ehrenfest time scale seems
indicate a more appropriated parameter to measure the
sicality in this system:\k2/8L!1.

V. CONCLUSION

In this paper we proposed a scheme for an ordered s
metric quantization based on the action of certain differen
operators. As an application, we quantized a classically t
cs

nd

c
ic
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evolved dynamical functions of the canonical variables
phase space, and showed that such a procedure is ade
during the Ehrenfest time scale for separable coherent in
states. This allowed us to propose a formal definition for
Ehrenfest time in terms of the phase space Laplacian op
tor acting on the classical solutions of the equations of m
tion. This makes our calculation much simpler than oth
approaches. We performed an explicit calculation for a s
tem of N-coupled nonlinear (2kth order! oscillators and cal-
culated the Ehrenfest time for generalN>1 andk>1. The
results are shown to agree with the results known in
literature for some particular cases.
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